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Abstract
Genomic resources are under-developed for rodents, including well-studied species such as prairie dogs (Cynomys spp.). 
We conducted whole-genome resequencing on 10 Gunnison’s prairie dogs (C. gunnisoni, GUPD) and identified 12,842,055 
high-quality SNPs, from which four sets of bait sequences were created. We designed two sets each (containing either 20k 
or 60k baits) for projects using contemporary (120 bp baits) or historical (100 bp baits) DNA. These bait sets can be used to 
study a variety of ecological and evolutionary questions in prairie dogs and other ground squirrel taxa.
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Genomic markers have enabled a mechanistic understand-
ing of ecological and evolutionary processes (e.g., Jarvis 
et al. 2014; Fernández et al. 2018; Ahrens et al. 2019). 
However, these resources are distributed unevenly across 
the tree of life (Thomson and Shaffer 2010), being dispro-
portionately available for charismatic megafauna (e.g., Cho 
et al. 2013; Zhao et al. 2013; Gordon et al. 2016). Still lag-
ging are resources from the most diverse group of mam-
mals—rodents—despite their ecological and evolutionary 
importance.

As keystone species of western North American grass-
lands, prairie dogs (Cynomys spp.) have been the subject 
of intensive research on disease ecology (e.g., Busch et al. 
2013; Sackett et al. 2013; Eads 2014), social behavior (e.g., 
Hoogland 1982; Sugg et  al. 1996), and communication 
(Kiriazis and Slobodchikoff 2006), and all five species are 
of conservation concern due to habitat loss, persecution and 
sylvatic plague (Hoogland 2001; Seglund et al., 2005). Prai-
rie dogs exhibit extreme variation in environmental condi-
tions (Castellanos-Morales et al. 2014, 2016) and ecological 
characteristics (Lehmer and Biggins 2005). Despite exten-
sive study on prairie dogs, the first mitochondrial (Streich 

et al. 2019) and nuclear (Tsuchiya et al., 2020) genomes 
were sequenced just in the last year, and few other publicly 
available genetic resources exist (Jones et al. 2005; Sackett 
et al. 2009).

Using 10 previously collected tissue samples (Fig. 1a; 
Sackett et al. 2014) from across the Gunnison’s prairie dog 
(C. gunnisoni; GUPD) species range, including 5 individu-
als from each subspecies, genomes were sequenced to 12× 
(5 samples) or 24× (5 samples; Fig. 1b) on an Illumina 
NovaSeq 6000 at Duke University Sequencing and Genomic 
Technologies. We retained all high-quality reads and aligned 
them to the C. gunnisoni reference genome (Tsuchiya et al. 
2020) with BWA (Li and Durbin 2009) using the mem algo-
rithm in paired-end mode. Bam files were sorted with Pic-
ardtools (http://broad​insti​tute.githu​b.io/picar​d/) and indexed 
with samtools (Li et al. 2009).

Polymorphisms were identified and filtered in GATK v4 
(DePristo et al. 2011) and vcftools v0.1.16 (Danecek et al. 
2011) to include SNPs and multi-nucleotide polymorphisms 
(MNPs) with a base quality score > 30 and a coverage depth 
> 8 in each individual. This resulted in 12,842,055 poly-
morphisms (Table 1) across 12,628 scaffolds. A generalized 
linear model showed the number of SNPs per individual was 
best predicted by sequencing coverage (p = 0.001) and non-
significantly by geographic distance to the reference genome 
sampling location (p = 0.251; Fig. 1b). We used vcftools 
to estimate the average number of heterozygous sites per 
sample, mean nucleotide diversity (pi), and the transition to 
transversion ratio (Table 1). Our quality filtering and SNP 
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selection parameters follow established standards (McKenna 
et al. 2010; Liu et al. 2012; Cassin-Sackett et al. 2019) and 

the pipeline, with specific parameters used in each step, is 
available on GitHub: https​://githu​b.com/Cassi​nSack​ett/
SNP_captu​re.

From these SNPs, we generated bait sets of different 
sizes, each corresponding to an upper limit for bait num-
bers (thereby maximizing cost efficiency) from Arbor Bio-
sciences. We used BaitsTools (Campana 2018) to randomly 
select either 20,000 or 60,000 SNPs from across the genome. 
Bait sequences are complementary to specific regions of 
DNA and are used to target these regions for in-solution 
hybridization to DNA libraries. For use with contempo-
rary DNA, we designed baits to be 120 base pairs in length 
(Cortes-Rodriguez et al. 2019) with the target SNP in the 
center of the sequence, requiring a minimum quality of 20 
for all bases in the sequence. We scaled the number of allow-
able SNPs per scaffold to the scaffold length, enabling large 
scaffolds to produce more baits. Baits designed for use with 
historical DNA followed the same parameters except that 
bait length was limited to 100 bp as the fragmentation of 
historical DNA may result in decreased binding to longer 
baits. These shorter baits can also be used for modern sam-
ples (but might result in less specific binding). We removed 
all baits shorter than 80 base pairs in order to minimize 

0 100 200km

BLFB

BLS

CRL

CT2CC

DCB

EMSP

GCR

PSLV

RSF

RM

TPRR

Arizona

Colorado

New Mexico

Utah

33°N33°N33°N

34°N

35°N

36°N

37°N

38°N

39°N

40°N

112°W 110°W 108°W 106°W
Longitude

La
tit

ud
e

genome gunnisoni zuniensis
a

100 200 300 400

30
00

00
0

40
00

00
0

50
00

00
0

Distance (km) from reference

N
um

be
r 

of
 S

N
P

s

C.g. gunnisoni
C.g. zuniensis
C.g. gunnisoni
C.g. zuniensis

0 2000 4000 6000 8000 10000 12000 14000

0
5

10
15

20
25

Scaffold

N
um

be
r 

of
 B

ai
ts

c

b

Fig. 1   a Map of locations in the Four Corners states (USA) for 
GUPD samples used in the development of the SNP array. Blue tri-
angles represent Cynomys gunnisoni gunnisoni; orange circles rep-
resent C. g. zuniensis. The black square is the sampling location for 
the animal sequenced for the reference GUPD genome. More details 
about sampling locations can be found in Sackett et al. (2014). Inset: 
Gunnison’s prairie dog in a low-elevation population in New Mexico. 

b Plot of the number of SNPs between each individual and the refer-
ence genome as a function of the geographic distance (in kilometers) 
between the two samples. Smaller points represent individuals rese-
quenced to 12 × coverage, while larger points are individuals rese-
quenced to 24 × coverage. c Number of baits per scaffold in the Bait 
Set 60k; each point represents the number of baits found on a single 
scaffold. The pattern is representative of coverage in other sets

Table 1   Summary statistics for SNPs identified among 10 GUPD and 
the reference genome

MNPs multiple nucleotide polymorphisms, SNPs single nucleotide 
polymorphisms

Summary statistics
 MNP 133,504
 SNP 12,708,551
 Transitions 8,404,676
 Transversions 4,303,486
 Transition:transversion ratio 1.953
 Mean number heterozygous sites/sample 2,777,417.2
 Pi 0.307552

Base substitutions
 A–C 1,112,735
 A–G 4,203,331
 A–T 1,169,792
 C–G 909,098
 C–T 4,201,345
 G–T 1,111,861
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off-target reads due to the less-specific binding of shorter 
baits. Final bait sets included 19,999 (“Modern Baits 20k”), 
60,000 (“Modern Baits 60k”), 19,997 (“Ancient Baits 20k”), 
and 59,996 baits (“Ancient Baits 60k”). As there was lit-
tle overlap in SNPs between modern and ancient bait sets 
(2459 of 60k SNPs and 910 of 20k SNPs), for projects using 
both historical and contemporary DNA we recommend the 
100 bp bait sets. Coverage of the genome by baits was rela-
tively consistent across scaffolds (Fig. 1c). All four bait sets, 
as well as all 12,842,055 SNPs embedded in 120 bp baits, 
are available on FigShare (https​://doi.org/10.6084/m9.figsh​
are.11803​326.v1).

Both bait sets are useful for genomics studies using 
neutral markers (Davidson et al. 2012; Giglio et al. 2020), 
whereas the 60k Bait Sets have denser sampling of the 
genome and are thus more appropriate for testing hypotheses 
about genomic regions under selection (Lowry et al. 2017). 
SNP arrays developed for one target species have been suc-
cessfully applied to species ~ 37 MY divergent (Kharzinova 
et al. 2015; Minias et al. 2019); the radiation of Marmotini 
dates back only 7–9 MYA (McLean et al. 2018). Thus, our 
SNP arrays developed for GUPD have great promise for use 
not only in Cynomys, but also in > 90 other ground squirrel 
species.
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