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1  | INTRODUC TION

Introduced pathogens have inflicted devastating consequences on 
wildlife around the globe, leading to extensive population declines 
and extinctions (e.g., Biggins & Schroeder, 1987; Cully & Williams 
2001; Cunningham & Daszak, 1998; Daszak, Cunningham, & Hyatt, 
2003; Frick et al., 2015; Thorne & Williams, 1988). Despite wide-
spread extinctions, some naïve species have evolved resistance (Best 

& Kerr, 2000; Bonneaud et al., 2011; Rocke et al., 2012) or tolerance 
(Atkinson, Saili, Utzurrum, & Jarvi, 2013) to introduced diseases over 
very short timescales (e.g., <50 generations; Decaestecker et al., 
2007). Recent adaptation to introduced diseases thus provides a 
useful model for the genomics of rapid adaptation to novel condi-
tions (Epstein et al., 2016). Moreover, explaining the genetic driv-
ers of disease resistance and tolerance is central to understanding 
disease dynamics (Langwig et al., 2017), the evolution of virulence 
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Abstract
Adaptation in nature is ubiquitous, yet characterizing its genomic basis is difficult 
because population demographics cause correlations with non adaptive loci. 
Introduction events provide opportunities to observe adaptation over known spatial 
and temporal scales, facilitating the identification of genes involved in adaptation. 
The pathogen causing avian malaria, Plasmodium relictum, was introduced to Hawai’i 
in the 1930s and elicited extinctions and precipitous population declines in native 
honeycreepers. After a sharp initial population decline, the Hawai’i ‘amakihi 
(Chlorodrepanis virens) has evolved tolerance to the parasite at low elevations where 
P. relictum exists, and can sustain infection without major fitness consequences. 
High- elevation, unexposed populations of ‘amakihi display little to no tolerance. To 
explore the genomic basis of adaptation to P. relictum in low- elevation ‘amakihi, we 
genotyped 125 ‘amakihi from the island of Hawai’i via hybridization capture to 
40,000 oligonucleotide baits containing SNPs and used the reference ‘amakihi ge-
nome to identify genes potentially under selection from malaria. We tested for out-
lier loci between low-  and high- elevation population pairs and identified loci with 
signatures of selection within low- elevation populations. In some cases, genes com-
monly involved in the immune response (e.g., major histocompatibility complex) were 
associated with malaria presence in the population. We also detected several novel 
candidate loci that may be implicated in surviving malaria infection (e.g., beta- 
defensin, glycoproteins and interleukin- related genes). Our results suggest that rapid 
adaptation to pathogens may occur through changes in different immune genes, but 
in the same classes of genes, across populations.
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(Barclay et al., 2012, 2014; Mackinnon & Read, 2004), co-evolution-
ary dynamics (Lively & Apanius, 1995) and the prediction of out-
breaks (Acevedo- Whitehouse et al., 2005).

Often, studies of adaptation in nature are limited by the long 
timescales over which adaptation occurs and the multiple sources 
of selective pressure on populations, making it difficult to associ-
ate particular alleles with a focal source of selection (Lewontin & 
Krakauer, 1973; Lotterhos & Whitlock, 2014). Recent biological 
invasions overcome these obstacles (Colautti & Lau, 2015; Lucek, 
Lemoine, & Seehausen, 2014), and introduced pathogens can exert 
strong selection and therefore elicit rapid and detectable adapta-
tion (Burdon & Thompson, 1995; Hochachka & Dhondt, 2000). As a 
result, the signatures of selection on host genes involved in recent 
adaptation are expected to differ from the rest of the genome (e.g., 
selective sweeps will fix large regions of the genome that have not 
been disassociated by recombination; Yeaman & Whitlock, 2011). 
In turn, the geographic distribution of alleles responding to selec-
tion by pathogens should mirror the distribution of those pathogens 
(Fumagalli et al., 2011; Haldane, 1948; Lewontin & Krakauer, 1973).

In many systems, parallel genetic changes have occurred during 
convergent phenotypic adaptation (Jones et al., 2012; Keller et al., 
2013; Kooyers & Olsen, 2012), but in others, convergent adapta-
tion has arisen through divergent genomic mechanisms (Hoekstra 
& Nachman, 2003; Roda et al., 2013; Rosenblum, Rompler, 
Schoneberg, & Hoekstra, 2010). In yet other cases, independent ge-
nomic adaptations across populations have been replaced by subse-
quent gene flow (Caprio & Tabashnik, 1992). We still lack a complete 
understanding of when molecular adaptation should be parallel 
versus divergent, although some patterns are beginning to emerge 
(Rosenblum, Parent, & Brandt, 2014). For phenotypes with multiple 
physiological or molecular mechanisms, such as tolerance to a patho-
gen, there are likely multiple genomic solutions that confer adapta-
tion (Pfeifer et al., 2018). In such cases, the first variant to appear in a 
population should rapidly increase in frequency, independent of the 
alleles in other populations, leading to differences among popula-
tions in the genomic basis of convergent phenotypes. Alternatively, 
if only one gene can produce an adaptive phenotype, parallel ge-
netic changes would be predicted to underlie convergent adaptation 
(Chan et al., 2010; Colosimo et al., 2005). Similarly, if gene flow was 
sufficiently high during initial adaptation, the first variant to confer 
tolerance should spread to other populations. These two latter sce-
narios can be distinguished by signatures of different mutations in 
the same gene (parallel adaptation) versus identical SNPs across all 
populations (homogenizing effect of gene flow). The genomic basis 
for convergent evolution can be studied in nature via replicated evo-
lutionary experiments such as species introductions.

Avian malaria, caused by the haemosporidian parasite Plasmodium 
relictum, has been introduced globally (Beadell et al., 2006). The par-
asite causes fitness declines even in asymptomatic hosts (Asghar 
et al., 2015) and has resulted in vast population declines and extinc-
tions in naïve species (Atkinson & LaPointe, 2009). Especially sus-
ceptible are the Hawai’ian honeycreepers, an adaptive radiation of 
at least 55 species (Fleischer & McIntosh 2001; Fleischer, McIntosh, 

& Tarr, 1998; James & Olson, 1991) that diversified from Eurasian 
rosefinches after colonization of the Hawai’ian Islands 5.8–7.2 mil-
lion years ago (Lerner, Meyer, James, Hofreiter, & Fleischer, 2011). 
Honeycreepers are an emblem of the negative consequences of 
species introduction: As a result of anthropogenic threats, at least 
17 species have gone extinct since the arrival of Europeans to the 
islands (Atkinson & LaPointe, 2009; van Riper, van Riper, Goff, & 
Laird, 1986). At least two introductions of a mosquito vector of avian 
malaria, Culex quinquefasciatus, occurred by the 1930s (Fonseca, 
Smith, Wilkerson, & Fleischer, 2006). Since then, avian malaria has 
decimated the remaining honeycreepers, contributing to at least 
seven extinctions (van Riper et al., 1986) and population declines in 
every surviving species (Atkinson & LaPointe, 2009; Paxton et al., 
2016). Most species have been forced into high- elevation refugia 
where disease transmission is reduced due to temperature limita-
tions on mosquito larval development, adult mosquito feeding rate 
and Plasmodium development within the mosquito (LaPointe, Goff, 
& Atkinson, 2010; van Riper et al., 1986; Samuel, Woodworth, 
Atkinson, Hart, & LaPointe, 2015). Mosquitoes are currently found 
at elevations up to 1,650 m (Goff & van Riper, 1980; van Riper et al., 
1986), but as the climate is predicted to warm on Hawai’i, the ex-
istence of susceptible honeycreeper species is in danger (Fortini, 
Vorsino, Amidon, Paxton, & Jacobi, 2015; Paxton et al., 2016).

Despite the catastrophic consequences of avian malaria in many 
species, populations of a few native species have begun to re-
cover. In the last several decades, populations of Hawai’i ‘amakihi 
(Chlorodrepanis virens) have expanded in size and distribution in low- 
elevation forests (Eggert et al., 2008; Foster et al., 2007) despite 
high prevalence of P. relictum in both mosquitoes (Woodworth et al., 
2005) and ‘amakihi (Kilpatrick et al., 2006; Woodworth et al., 2005). 
Challenge experiments have demonstrated higher survivorship of 
low- elevation ‘amakihi—which have evolved in the recent presence 
of avian malaria—than high- elevation ‘amakihi, which are naïve to the 
disease (Atkinson et al., 2013), and surviving individuals are immune 
to reinfection (Atkinson, Dusek, & Lease, 2001). Juvenile ‘amakihi 
disperse farther within the same elevation than up or down in el-
evation (Lindsey, Vanderwerf, Baker, & Baker, 1998); thus, there is 
limited gene flow across elevations (Eggert et al., 2008; Foster et al., 
2007). As a result, alleles conferring tolerance to avian malaria are 
likely to spread within low- elevation populations more rapidly than 
they expand upwards to high- elevation populations, presenting an 
opportunity to identify genes involved in adaptation.

In this study, we use samples that were collected from 1987 to 
2005 to implement comparative genomics across low- , mid-  and 
high- elevation populations of Hawai’i ‘amakihi, analysing patterns 
of genomic diversity within and among populations to infer the re-
sponse to malaria- induced selection. We aim to (a) identify signa-
tures of selection to determine the genes associated with malaria 
tolerance in low- elevation populations, (b) evaluate the degree to 
which the same candidate genes are implicated in adaptation among 
populations, and (c) assess whether candidate genes are more often 
involved in known immune function versus other cellular processes 
that were co-opted to defend against malaria infection.
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2  | MATERIAL S AND METHODS

2.1 | Sampling design and genomic library 
preparation

From 1987 to 2005, ‘amakihi blood or tissue was sampled from 21 
sites along elevational gradients on the island of Hawai’i (Figure 1; 
Eggert et al., 2008; Foster et al., 2007; Tarr & Fleischer, 1993). For 
this study, we used a random subset of samples from each site. 
Sampling protocols have been described in detail elsewhere (Tarr & 
Fleischer, 1993; Woodworth et al., 2005). All sampling occurred in 
concordance with IACUC approvals. DNA was extracted from blood 
using a Qiagen DNeasy Blood and Tissue Kit following the manufac-
turer’s protocol, or using phenol: chloroform (Tarr & Fleischer, 1993).

Using the ‘amakihi genome (Callicrate et al., 2014) as a reference, 
we designed a custom 40,000 bait in- solution hybridization assay 
containing baits with SNPs distributed randomly throughout the ge-
nome (at least 80 bp apart); the baits were generated by MYcroarray 
(now Arbor Biosciences, Ann Arbor, MI, USA). On average, this de-
sign resulted in a bait every 275,000 bp. The genome is available 
in NCBI’s BioProject repository (Accession no. PRJNA252695), and 
the baits have been placed in a GitHub repository (https://github.
com/CassinSackett/SNPcapture/). For each individual, 1–2 μg DNA 
in 25 μl nuclease- free water was first sheared in a Q800R sonica-
tor (QSonica LLC, Newton, CT, USA) for 4.5–6.5 min, depending 
on initial sample quality, to a target size of 400 bp. A customized 

Nextera- style library preparation was then performed, tagging each 
individual with a unique combination of two barcoded Illumina prim-
ers. To maximize hybridization efficiency, equal amounts of DNA 
from eight individuals were pooled to hybridize with the baits. After 
hybridization for 48 hr, all pools were combined in equimolar ratios 
and sequenced with Nextera- style adapters on either an Illumina 
MiSeq or HiSeq paired- end, 150 bp read run. We genotyped 121 
birds (53 low elevation, 8 mid- elevation, 52 high elevation and 8 
from a captive family group to validate Mendelian inheritance in 
each SNP) at the 40,000 target loci as well as ~160,000 off- target 
loci recovered as bycatch during hybridization and amplification. 
Off- target loci were retained in analyses to increase the proportion 
of the genome represented (beyond the ~6 million base pairs af-
forded by 150- bp reads).

2.2 | Sequence processing and SNP detection

Populations were classified as low- or high-elevation based on the 
historical (1900s) occurrence of mosquitoes at the sampled eleva-
tion, a proxy for malaria exposure (Keyghobadi, LaPointe, Fleischer, & 
Fonseca, 2006; LaPointe et al., 2010). The mid- elevation population 
is characterized by seasonal malaria transmission; these designations 
are consistent with the reliance of mosquitoes on temperature and 
with previous classification of populations (e.g., Eggert et al. 2008; 
Foster et al., 2007; van Riper et al., 1986; Woodworth et al., 2005). 
We aligned quality- filtered reads to the ‘amakihi reference genome 
(Callicrate et al., 2014) and performed additional quality filtering 
steps in gatk (Van der Auwera et al., 2013) and vcftools (Danecek et 
al., 2011; see Supporting Information Methods for details). To maxi-
mize the number of SNPs in each downstream analysis, we gener-
ated separate files with different subsets of SNPs for (a) the entire 
spatial data set after filtering (N = 118 birds), (b) all individuals within 
an elevation after filtering (N = 48 low and N = 49 high), (c) each low- 
high elevation population pair after filtering and (d) each population 
separately after filtering (single population numbers in Supporting 
Information Table S1). SNPs that were fixed within populations or 
within population pairs were removed in the appropriate subset, but 
retained in other subsets. In each subset, we used vcftools to filter 
the data set for missingness through an iterative process of removing 
individuals and loci designed to maximize both number of individu-
als and SNPs retained in the final data sets (Supporting Information 
Methods). This filtered data set resulted in a large number of high- 
quality SNPs in each subset (mean = 157,546 SNPs, Supporting 
Information Tables S1 and S2). VCF files were converted to other for-
mats for downstream analyses using pgdspider2 (Lischer & Excoffier, 
2012). A detailed description of the pipeline and scripts are avail-
able on the lead author’s (LCS) GitHub website (https://github.com/
cassinsackett/SNP_capture).

2.3 | Genetic diversity and population structure

We grouped individuals into populations based on sampling local-
ity, prior literature, personal knowledge and correspondence with 

F IGURE  1 Map of sites from which 125 Hawai’i ‘amakihi were 
sampled across the island of Hawai’i. Circles represent low- 
elevation sites (0–1,200 m; mosquitoes present), square represents 
a mid- elevation site (1,200–1,400 m), and triangles represent high- 
elevation sites (1,450–2,400 m; mosquitoes absent) [Colour figure 
can be viewed at wileyonlinelibrary.com]
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local ornithologists (Figure 1; Eggert et al., 2008; Foster et al., 2007; 
Lindsey et al., 1998; E.H. Paxton, personal communication). To un-
derstand the genetic background under which recent evolution may 
have occurred, we estimated genetic diversity and population struc-
ture using several methods (Supporting Information Figure S1). First, 
we estimated mean heterozygosity within individuals and performed 
a two- sample t test to determine whether heterozygosity was dif-
ferent among low-  and high- elevation individuals. We used vcftool 
(Danecek et al., 2011) to estimate departures from Hardy–Weinberg 
equilibrium and nucleotide diversity (pi; Nei & Li, 1979) within popu-
lations and pairwise FST between all population pairs (Supporting 
Information). We performed t tests in r (R Core Team 2018) to de-
termine whether nucleotide diversity differed between elevations 
and whether this differentiation was greater than within- elevation 
population pairs. Next, we estimated the number of effective mi-
grants between low-  and high- elevation populations using genepop 
V4.3 (Rousset 2008). Finally, we performed a principal component 
analysis (PCA) with the ade4 package (Chessel , Dufour, & Thioulouse, 
2004; Dray & Dufour, 2007) in R on a data set containing no missing 
data (N = 2,816 SNPs). We used the “bca” function to test whether 
individual genotypes were differentiated by elevation across all prin-
cipal components; statistical significance was assessed by a rand-
omization test with 10,000 iterations.

2.4 | Inference of selection

We searched for genomic signatures of selection in several ways, 
in order to minimize false positives arising from a single analysis. 
First, we performed outlier tests between all pairs of low-  and 
high- elevation populations (N = 9 pairs; three high- elevation pair-
ings for each of three low- elevation populations) in bayescan 2.1 
(Foll & Gaggiotti, 2008) using a false discovery rate threshold of 
0.1. Second, because few outliers were detected, even under dif-
ferent model parameters (e.g., prior odds 1–1,000, FDR = 0.2), we 
subsequently designated as “quasi- outliers” the 0.1% of SNPs with 
the highest FST (calculated in vcftools) between low- elevation and 
high- elevation population pairs and between all low- elevation 
individuals and all high- elevation individuals. A threshold of 1% 
most- differentiated loci is commonly used (e.g., Stankowski, Sobel, 
& Streisfeld, 2016; Love et al., 2016), but our aims were to mini-
mize false positives and to be conservative given the potential ef-
fects of genetic drift on differentiation among small populations 
(and the structure imposed by low dispersal across elevations). 
Additionally, performing multiple comparisons (e.g., nine pairwise 
comparisons among six populations) typically requires lowering 
the critical threshold for significance to minimize false positives. 
For the outliers and quasi- outliers, we extracted flanking se-
quence from the ‘amakihi genome around these SNPs (Callicrate 
et al., 2014) and inferred gene identity using the blastn option of 
the Basic Local Alignment Search Tool (blast, Altschul, Gish, Miller, 
Myers, & Lipman, 1990) and the ncbi nucleotide database (Zhang, 
Schwartz, Wagner, & Miller, 2000). To avoid false inference of 
matching genes that may occur with longer queries, we used the 

shortest query size for each SNP (at least 300 bp on each side of 
the SNP) that produced significant blast hits. SNPs that returned 
no hits with the smallest query size were queried with larger flank-
ing regions in a stepwise manner (e.g., 500 bp, 1 kb, 2 kb) up to 
10 kb on each side of the SNP.

Next, we examined Long Runs of Homozygosity (Auton et al. 
2009) using vcftools. Although this method is typically used to infer 
inbreeding, regions that are homozygous within multiple outbred in-
dividuals could be indicative of selection. Therefore, we searched 
for regions with a high probability of autozygosity in multiple indi-
viduals within each low- elevation population. We examined the re-
sulting regions for overlap with the quasi- outliers in each population. 
Finally, we calculated Tajima’s D in 1 kb windows within each low- 
elevation population using vcftools. Largely negative Tajima’s D can 
be indicative of recent selective sweeps; therefore, we focused on 
regions with the 25 most negative Tajima’s D values in low- elevation 
populations for follow- up analyses, along with SNPs deemed to be 
statistical outliers and “quasi- outliers” (the 0.1% most- differentiated 
loci) between low and high elevations. A summary of these methods 
is presented in Supporting Information Figure S1.

2.5 | Gene ontology over-representation

Rapid adaptation to pathogens may leverage existing immune pro-
cesses, or it may co- opt unrelated pathways (e.g., the sickling of 
red blood cells that reduces malaria infection in humans). In order 
to determine whether inferred loci under selection were more com-
monly involved in immune function relative to other processes than 
expected by chance (i.e., relative to the proportion of immune genes 
vs. other genes in the genome), we compared the genes under in-
ferred selection in ‘amakihi to the number of known genes for a given 
functional class in the chicken genome (the most well- annotated 
avian genome available). To do so, we used Panther (Mi, Poudel, 
Muruganujan, Casagrande, & Thomas, 2016) to assess gene ontology 
on the blast results (up to 3 hits per locus) for multiple analyses: the 
inferred outliers from BayeScan; the 0.1% of loci with the highest FST 
between low-  and high- elevation individuals; and the 25 loci with the 
most negative Tajima’s D statistic within low- elevation populations. 
We pooled the gene lists from the blast results and reduced the list 
to unique gene entries. Next, we compared the gene lists in ‘amakihi 
with a reference set of genes comprising all genes in the Gallus gallus 
genome (N = 15,782 known genes), which we assume equates to all 
genes in the ‘amakihi genome. We performed an over-representation 
test to determine which genes appeared more or less often in the 
candidate gene set than expected by chance, based on the number of 
genes in each category. We used the Panther hierarchical classifica-
tion system for biological processes and for molecular function (Mi, 
Muruganujan, Casagrande, & Thomas, 2013). The chicken reference 
genes were categorized into 247 biological processes and 184 mo-
lecular functions, and the number of expected ‘amakihi genes in each 
category was generated based on the total number of unique genes 
resulting from the blast analyses (N = 447 genes). Significance testing 
included a Bonferroni correction for multiple testing.
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3  | RESULTS

3.1 | SNP statistics

For the entire data set (all individuals), we recovered 399,197 SNPs 
passing quality filters, including 359,197 off- target loci. The re-
sulting SNP density in our data set was ~4 quality- filtered SNPs 
every 10,000 base pairs. Approximately 8% of SNPs did not follow 
Mendelian expectations and were discarded. Our final data sets con-
tained the SNPs genotyped in at least 80% of individuals (Supporting 
Information Table S1).

3.2 | Genetic diversity and population structure

Individual heterozygosity ranged from 0.0046 to 0.079 and was sig-
nificantly higher among low- elevation individuals (mean = 0.0512, 
SD = 0.02) than high- elevation individuals (mean = 0.0417, 
SD = 0.02, p = 0.025, df = 93 [t test]; Supporting Information Table 
S1, Figure S3). Heterozygosity was lowest in high- elevation Pu’u 
La’au (mean Ho = 0.016, SD = 0.009) and highest in low- elevation 

Hualālai (mean Ho = 0.068, SD = 0.01, Supporting Information Table 
S1). Within populations, there was a larger proportion of sites that 
exhibited a significant (p < 0.01) deficit of heterozygotes (0.06% of 
SNPs in Hualālai, 0.56% of SNPs in Manukā and 5.0% of SNPs in 
Pāhoa) than an excess of heterozygotes (0%–0.05% per population). 
Nucleotide diversity (pi) was approximately equal across populations 
(Supporting Information Table S2); diversity was not significantly dif-
ferent in low-  and high- elevation populations (p > 0.7).

Average genomewide differentiation between pooled low-  
and high- elevation individuals was low but significant (Weir 
and Cockerham weighted FST = 0.0065). Pairwise differentia-
tion between populations averaged 0.0124 for low- low popu-
lation pairs, 0.0182 for high- high population pairs and 0.0174 
for low- high population pairs (Supporting Information Table S2; 
Figure 2, Supporting Information Figure S6). Differentiation was 
not significantly higher between low- high population pairs than 
within- elevation pairs (p > 0.3). There were no fixed differences 
between low-  and high- elevation populations when pooling all in-
dividuals within an elevation. The estimated number of migrants 

F IGURE  2 Plot of FST between all low-  high  elevation population pairs across the genome; alternating colours represent different 
chromosomes. Dashed lines represent the threshold for denoting quasi- outliers in each population. Outlier genes are denoted with asterisks; 
genes without asterisks represent the most- differentiated SNPs in each population pair. Population pairs with no gene names had no outliers 
blast to immune- related genes [Colour figure can be viewed at wileyonlinelibrary.com]
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was not significantly different between elevations (m = 2.33) than 
within elevations (mlow–low = 2.46, mhigh–high = 2.18; Supporting 
Information Table S3). Optimization of the SNP processing pipe-
line (i.e., performing each set of analyses with different subsets of 
loci and individuals) demonstrated that several analyses were de-
monstrably influenced by the amount of missing data. Estimates of 
FST decreased and the effective number of migrants (Nm) increased 
with less missing data.

Principal component analysis indicated partial genetic overlap 
between elevations, with segregation between low and high ele-
vations (Figure 3, Supporting Information Figure S5). The first two 
components explained 1.9% and 1.8% of the genetic variance among 
individuals. The randomization test for the between- class (i.e., 
between- elevation) analysis along all components demonstrated sig-
nificant differentiation between low-  and high- elevation individuals 
(p = 0.0002).

3.3 | Loci under potential selection

In each of nine low- high population pairs, BayeScan inferred 0–6 
outliers at a FDR threshold of 0.1 (Supporting Information Table S4). 
Of the 10 total statistical outliers, six had blast hits with no inferred 
relationship to malaria infection (Supporting Information Table S4), 
while four potentially served a role in surviving infection. First, a 
region on chromosome 2 blasted to Cytoplasmic FMR1 interacting 
protein 2, a gene with functions in T- cell adhesion (Figure 2). Second, 
a region on chromosome 5 blasted to Toll- like receptor 5, a gene with 
known immune function. This gene was also inferred by Tajima’s D to 

be under selection in Hualālai (Table 1). Third, a region on chromo-
some 10 blasted to both attractin and beta- defensin (Table 1); both 
genes function in the immune response. Beta- defensin was also a 
match to several quasi- outlier SNPs. Finally, a region on chromo-
some 12 blasted to Contactin- 3, a gene encoding an immunoglobulin 
protein that mediates cell–surface interactions.

Low- high elevation population pairs contained from 61 to 138 
quasi- outlier SNPs each (878 total, Figure 2). Of these, 56 SNPs were 
found in two (N = 52 SNPs) or three (N = 4 SNPs) population pairs. In 
all but three of these instances, at least one population was common 
to both pairs, suggesting that in most cases, a mutation occurred once 
in a single population. In addition, 145 SNPs were situated within 10 kb 
of a SNP in another population pair—79 SNPs were within 200 bp of 
another—which could indicate different mutations across populations 
in the same gene region (including regulatory elements). Although the 
remaining quasi- outlier sites differed among populations, there were 
only nine private quasi- outlier alleles within low- elevation popula-
tions, indicating primarily shared variation among low- elevation sites.

Of the 818 unique quasi- outliers, 271 blasted to multiple loci that 
included repetitive DNA (e.g., LINEs, microsatellites or repeat do-
mains in known genes). These were inferred to be either non coding 
DNA that drifted or hitchhiked with other mutations or repetitive 
regions common to many proteins. An average of 56 quasi- outlier 
SNPs per population pair were localized in repeat regions detected 
by RepeatMasker. However, 37 of these 271 loci blasted to beta- 
defensin as one of the top three hits in addition to other matching 
sequences. Seven quasi- outlier SNPs from one population pair were 
localized to the mitochondrial cytochrome b gene.

The remaining 521 loci (SNP + flanking region) blasted to iden-
tified genes, of which 76 had putative immune- related functions (in 
addition to the 37 potential beta- defensin SNPs) (Table 1, Supporting 
Information Table S6; E values in Supporting Information Files). Of 
the 56 quasi- outlier SNPs appearing in multiple population pairs, 
16 were in repeat regions and nine were in immune- related regions 
(Table 1). The 64 regions containing multiple SNPs in close proximity 
followed a similar pattern: 21 blasted to repeat regions, 3 to UCEs 
and 11 to immune- related genes (Supporting Information Methods). 
Quasi- outlier sites exhibited larger heterozygote deficits than the 
total set of filtered SNPs by an order of 3.9–10.2 (0.6% in Hualālai, 
5.5% in Manukā and 19.8% in Pāhoa). Heterozygote excess within 
quasi- outliers was negligible (1 site in Hualālai and 1 site in Pāhoa).

The number of long runs of homozygosity (LROH) longer than 
3Mb on a chromosome was proportional to the number of baits on 
that chromosome, suggesting that a higher density of SNPs results 
in higher power to detect LROH. In low- elevation individuals, 4,122 
sites were inferred to begin LROH. Although most of these occurred 
in inbred individuals, 172 sites were located within 10 kb of a quasi- 
outlier SNP; this number of LROH corresponding to quasi- outliers is 
likely an underestimate because 1,838 runs were >10 kb. Of these 
172 sites, 37 occurred in repeat regions and 26 blasted to genes re-
lated to immune function (Table 1, Supporting Information Table S6). 
In some cases, the LROH was inferred in a different population than 
either population in the corresponding quasi- outlier site.

F IGURE  3 Principal component analysis of genotypes in 
individuals from low (N = 46), mid-  (N = 8) and high (N = 46) 
elevations. Plot summarizes genotypes at 2,816 SNPs with no 
missing data. PC1: Principal component axis 1 (which explains 1.9% 
of the variance), PC2: principal component axis 2 (which explains 
1.8% of the variance); 96 axes were needed to explain all genetic 
variance [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE  1 List of immune- related genes inferred to be under potential selection by various methods. In cases where loci blasted against 
multiple results, only the top 3 hits are displayed. All population pairs are low elevation vs. high elevation unless noted

Immune- related gene How selection was inferred In which population/pair

Attractin Statistical outlier Hualālai–Mauna Loa

Beta- defensin gene cluster Statistical outlier Hualālai–Mauna Loa

Top 0.1% highest FST Low- high elevation; Hualālai–Mauna Loa; Hualālai–Pu’u 
La’au; Manukā–Mauna Loa; Manukā–Pōhakuloa; 
Pāhoa–Mauna Loa; Pāhoa–Pōhakuloa; Pāhoa–Pu’u 
La’au (all with multiple loci)

25 most negative Tajima’s D Pāhoa; Manukā; Hualālai (all low)

LROH Manukā (low); Pāhoa (low); mid- elevation

CD glycoproteins (1b- 3, 4, 7, 8b, 59, 99, 101, 180, 
200, 276)

Top 0.1% highest FST Low–high elevation; Hualālai–Mauna Loa; Manukā–
Mauna Loa; Pāhoa–Mauna Loa; Pāhoa–Pōhakuloa

25 most negative Tajima’s D Manukā (low elevation); Pōhakuloa (high- elevation)

LROH Pāhoa (low elevation)

Contactin 3, 5 Statistical outlier Manukā–Mauna Loa

Top 0.1% highest FST Manukā–Mauna Loa; Pāhoa–Mauna Loa

LROH Pāhoa (low elevation)

Cytoplasmic FMR1 interacting protein 2 (CYFIP2) Statistical outlier Pāhoa–Pu’u La’au

Top 0.1% highest FST Hualālai–Pu’u La’au; Pāhoa–Pu’u La’au

Family with sequence similarity 83H, 174B, 221A 
(associated with interleukin- 8 secretion & viral 
loads)

Top 0.1% highest FST Pāhoa–Pōhakuloa; Pāhoa–Pu’u La’au

LROH Hualālai; Pāhoa (both low elevation)

FK506 binding proteins 1B, 4, 14, 15 Top 0.1% highest FST Hualālai–Mauna Loa; Hualālai–Pōhakuloa; Manukā–
Pōhakuloa; Pāhoa–Mauna Loa; Pāhoa–Pu’u La’au

LROH Manukā (low elevation)

Heat shock proteins (Hsp40, Hsp70) Top 0.1% highest FST Low–high elevation; Manukā–Pōhakuloa

Hematopoietic lineage cell- specific protein (antigen 
receptor signalling)

Top 0.1% highest FST Pāhoa–Pu’u La’au

Immunoglobulin receptors Top 0.1% highest FST Low–high elevation; Hualālai–Mauna Loa

25 most negative Tajima’s D Hualālai (low); mid- elevation; Pōhakuloa (high)

LROH Manukā (low elevation)

Interferon stimulator and α/β receptor 2 Top 0.1% highest FST Hualālai–Pōhakuloa; Hualālai–Pu’u La’au; Manukā–Pu’u 
La’au

25 most negative Tajima’s D Hualālai (low elevation)

LROH Mid- elevation

Interleukin regulators/receptors/binding and 
associated proteins (2, 3, 8, 10, 11, 12B, 16,  
17B, 18, 23)

Top 0.1% highest FST Low–high elevation; Hualālai–Mauna Loa; Hualālai–
Pōhakuloa; Hualālai–Pu’u La’au; Manukā–Mauna Loa; 
Manukā–Pōhakuloa; Manukā–Pu’u La’au; Pāhoa–
Mauna Loa; Pāhoa–Pōhakuloa; Pāhoa–Pu’u La’au

25 most negative Tajima’s D Hualālai; Manukā; Pāhoa (all low elevation)

Pu’u La’au (high elevation)

Mid- elevation

LROH Pāhoa (low elevation); Manukā (low elevation), 
mid- elevation

Lymphocyte antigens (6E, 75) Top 0.1% highest FST Low–high elevation; Hualālai–Pu’u La’au

25 most negative Tajima’s D Pāhoa; Hualālai (both low elevation)

LROH (low elevation)

(Continues)
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The distribution of Tajima’s D was leptokurtic and centred just 
below zero (Supporting Information Table S1, Figure S7) in all but 
one population from all elevations, consistent with widespread re-
cent population expansions (Foster et al., 2007). The exception 
was Pu’u La’au (Tajima’s D = 0.0003), a high- elevation population. 
Of the 25 1 kb regions with the largest negative Tajima’s D values 
in low- elevation populations (indicating possible purifying selec-
tion), twelve blasted to genes related to immune function (Table 1, 
Supporting Information Table S6). In addition, three loci related to 
blood function were characterized by largely negative Tajima’s D 
(Supporting Information Table S5).

3.4 | Consistency across populations

Of the five population pairs with outlier SNPs, none shared outliers, 
and none of the 10 outliers were within 5 million base pairs of an 
outlier in another population pair. However, two outliers were quasi- 
outliers in another population pair; one of these was also situated 
within 20bp of three additional quasi- outliers in the second population 
pair. In two outliers, all low- elevation populations shared a predomi-
nant allele that differed from high- elevation populations, whereas five 
outliers were marked by only one population with a different predomi-
nant allele than the other five populations. There was more consist-
ency among populations in quasi- outliers. Of the 818 quasi- outlier 
SNPs, 71 contained genotypes passing quality filters in only one 
low- elevation population. Among the remaining 747 SNPs, 56 were 
quasi- outliers in multiple populations, and 145 SNPs (in 64 genomic 
regions) were found within 10 kb of a quasi- outlier SNP in the same 
(70%) or another (30%) population. In addition, 242 (30%) quasi- outlier 
SNPs were among the top 1% most- differentiated SNPs in another 
population pair. Allele frequencies at quasi- outlier loci were correlated 

in low- elevation populations (Spearman’s rho = 0.522–0.607, all 
p ≪ 0.001), suggesting that loci that were deemed quasi- outliers in 
only a single population had similar allele frequencies but did not at-
tain the statistical threshold set for quasi- outliers in other populations 
(Supporting Information Table S7). Only nine quasi- outliers contained 
alleles that were private to low elevation (four occurring in only one 
population), and five contained private alleles at high elevation (all oc-
curring in only one population). The remaining SNPs differed in allele 
frequency across elevation, but alleles were present at all elevations 
(although not necessarily in all populations). Of the sites beginning 
LROH, 4.2% were located in close proximity to quasi- outlier SNPs. 
With specific immune- related genes resulting from blast searches, 
there was a moderate level of sharing among low- elevation popula-
tions (Figure 4), and when genes were combined into similar classes 
(e.g., all glycoproteins, all Toll- like receptors, all interleukins), the pro-
portion of gene classes shared among populations was high.

3.5 | Gene over-representation

Of the candidate loci from combined analyses, there were 447 
unique genes from the resulting blast searches. Gene ontology cat-
egories in Panther were hierarchically classified into 247 biological 
processes. Of these, there were 25 processes that were under-  or 
over- represented (p < 0.10, Figure 5). Six of these were both sig-
nificantly over-represented and displayed threefold enrichment or 
greater in ‘amakihi with at least two genes recovered (i.e., gene on-
tology categories appeared more often in ‘amakihi than expected, 
relative to the number of genes of those categories in the genome, 
with gene number inferred from the Gallus gallus reference). Immune 
system processes were enriched 1.5- fold. In addition, three biologi-
cal processes related to mRNA processing and RNA splicing were 

Immune- related gene How selection was inferred In which population/pair

Major histocompatibility complex and NFX1 
(regulates expression of MHC II)

Top 0.1% highest FST Low–high elevation; Hualālai–Pu’u La’au; Manukā–
Mauna Loa; Pāhoa–Mauna Loa; Pāhoa–Pōhakuloa

25 most negative Tajima’s D Manukā; Hualālai (both low elevation)

LROH Manukā (low elevation); Pāhoa (low elevation); 
mid- elevation

Semaphorin (modulates immune response following 
CNS trauma)

Top 0.1% highest FST Manukā–Pu’u La’au

Top 0.1% highest FST Pāhoa–Pu’u La’au

T- cell related (differentiation protein MAL; receptors; 
activators)

Top 0.1% highest FST Hualālai–Mauna Loa; Manukā–Mauna Loa; Manukā–
Pōhakuloa; Manukā–Pu’u La’au

LROH Manukā (low elevation)

Toll- like receptor 5, 7 Statistical outlier Manukā–Mauna Loa

Top 0.1% highest FST Manukā–Mauna Loa

25 most negative Tajima’s D Hualālai (low elevation)

Tumour necrosis factor ligand member 10 (induces 
apoptosis)

Top 0.1% highest FST Pāhoa–Mauna Loa

25 most negative Tajima’s D Mauna Loa; Pōhakuloa (both high- elevation) ; 
Mid-elevation

TABLE  1  (Continued)
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characterized by significantly lower- fold enrichment (less than one- 
third). Two immune- related categories contained no genes from the 
candidate loci list: defence response to bacterium and antigen pro-
cessing and presentation; however, due to the small number of genes 
in these categories in the chicken genome (<30 out of 15,782), this 
underrepresentation was not significant.

When genes were categorized according to molecular function, 10 
functions containing at least two ‘amakihi genes were enriched at least 
threefold (p < 0.10, Supporting Information Results). Two additional 
immune- related functional categories (interferon receptor binding 
and transforming growth factor beta- activated receptor activity) were 

enriched threefold but contained only one ‘amakihi gene, so the en-
richment was not significant (p > 0.1). The lack of significance derives 
from the small number of genes in these respective categories, yet this 
enrichment may be biologically relevant. No molecular functions were 
significantly under- represented by the same amount (one- third).

4  | DISCUSSION

We use introduced avian malaria as a model of rapid evolution to 
a novel selection pressure, presenting evidence from multiple 

F IGURE  4 Venn diagrams showing the sharing of immune- related genes, inferred from blast results, among low- elevation populations. 
(a) Each specific gene counted uniquely, (b) classes of similar genes (e.g., all glycoproteins) combined [Colour figure can be viewed at 
wileyonlinelibrary.com]

F IGURE  5 Plot of significantly 
(p < 0.10) under-  and over- represented 
biological process categories (y- axis) in 
‘amakihi genes under inferred selection 
relative to the expected number of genes 
in each category in the annotated chicken 
(Gallus gallus) genome. ‘amakihi genes are 
derived from a blast search of the outliers, 
quasi-outliers, and 25 most-negative 
Tajima’s D. Vertical line represents one 
(equally represented between chicken and 
‘amakihi), and x- axis denotes the degree 
of under-  or over-representation (e.g., “3” 
means a category was over-represented 
threefold in ‘amakihi) [Colour figure can 
be viewed at wileyonlinelibrary.com]
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approaches that malaria- exposed, low- elevation ‘amakihi possess 
a suite of genomic differences from high- elevation malaria- naïve 
‘amakihi in immune- related genes. In addition, our data suggest that 
genetic variation of adaptive significance can be maintained despite 
strong population bottlenecks. Multiple loci displayed signatures of 
selection and/or unusually high differentiation between malaria- 
naïve and exposed populations. Mean Tajima’s D was below zero in 
all low-  and mid- elevation populations, consistent with widespread 
recent population expansions following malaria- induced bottlenecks 
(Foster et al., 2007), a hypothesis that follows from the field obser-
vation of an increase in survivorship following malaria infection in 
recent decades. Genetic diversity was not lower in low- elevation 
populations, lending support to the idea that malaria survival in 
low- elevation ‘amakihi has facilitated the maintenance of genetic 
variation.

4.1 | Immune genes under potential selection

Among the loci that differed most strongly between low-  and high- 
elevation, a subset were related to pathogen defence and immune re-
sponse. Some predictable loci were inferred to be under selection in 
localities with higher rates of malaria transmission, such as the major 
histocompatibility complex (MHC). However, several different regions 
of the ‘amakihi genome blasted to the MHC region, suggesting the 
occurrence of false- positive associations resulting from their exten-
sive study (leading to over-representation on GenBank) or from gene 
duplication. Nonetheless, there is evidence that the MHC may play 
a role in the malaria response. Although MHC is typically subject to 
balancing selection, particular alleles may be associated with lower 
incidence of haemosporidian infection (Jones, Cheviron, & Carling, 
2015); these alleles would be expected to exert selection on the para-
site and decrease in frequency after the parasite adapts. This finding 
is consistent with the pattern of spatial variation in host MHC diver-
sity mirroring disease prevalence in some passerines (Jones, Cheviron, 
& Carling, 2014; Jones et al., 2015; S. Jarvi personal communication). 
Moreover, host MHC variation has been linked to disease outcome 
in a variety of vertebrate infectious diseases (e.g., Grimholt et al., 
2003; Hawley & Fleischer, 2012; Kaufman, 2000; Tarleton, Grusby, 
Postan, & Climcher, 1996; Turner, McAllister, Xu, & Tapping, 2008; 
Savage & Zamudio, 2011), and avian malaria in passerines in particular 
(Bonneaud, Pérez- Tris, Federici, Chastel, & Sorci, 2006; Westerdahl 
et al., 2005). Therefore, the fact that our genomewide SNP assay 
recovered MHC as associated with malaria- induced selection is con-
sistent with other patterns of selection on MHC observed in hon-
eycreepers (Jarvi, Tarr, Mcintosh, Atkinson, & Fleischer, 2004; Jarvi 
et al., 2016).

Our dataset also revealed several candidates for adaptation to 
malaria that are novel to this system but have been documented in 
other malarial systems. In particular, other infection-  and immune- 
related genes (e.g., Toll- like receptors; Coban et al., 2005; Franklin 
et al., 2009; Mockenhaupt et al., 2006; interferons; and tumour ne-
crosis factors; De Souza, Williamson, Otani, & Playfair, 1997; Franklin 
et al., 2009; Grau et al., 1989) were invoked in our comparisons as well 

as other studies of malaria in humans and mice. Interestingly, although 
beta- defensins are known to play a role in infection and to be under 
selection in some mammals (van Dijk, Veldhuizen, & Haagsman, 2008; 
Ganz, 2003; Semple, Rolfe, & Dorin, 2003), they have not, to our 
knowledge, been linked to malaria response in vertebrates. However, 
expression of beta- defensin increased after infection with P. berghei 
in Anopheles mosquitoes (Richman, Dimopoulos, Seeley, & Kafatos, 
1997), and other defensins are toxic to P. gallinaceum in Aedes mos-
quitoes (Shahabuddin, Fields, Bulet, Hoffmann, & Miller, 1998). In ad-
dition, the literature is equivocal on the role of some genes, such as 
CD1, in combating infection with Plasmodium (Molano et al., 2000; 
Schofield et al., 1999). For nonmodel species, the utility of the ge-
nomewide approach lies in its identification of previously unknown 
candidate genes for their putative roles in  specific infections.

In some cases, there appears to be a nuanced relationship be-
tween malaria and genotype that we did not have the genomic 
resolution to test here. Immunoglobulins, for example, are related 
to Plasmodium infection in birds (Atkinson et al., 2001) and malaria 
severity in humans, but the direction of severity changes for differ-
ent immunoglobulin isotypes and subclasses (Aucan et al., 2000; 
Perlmann et al., 1997). The loci inferred to be under selection in this 
study were not identified as a particular type of immunoglobulin, 
so it is unclear the exact role they may play; follow- up studies using 
immunoglobulin profiling (Turchaninova et al., 2016) rather than 
DNA sequencing may prove fruitful. Similarly, certain types of gly-
coproteins play a protective (Friedman, 1983; Jakobsen et al., 1994; 
Ockenhouse, Tandon, Magowan, Jamieson, & Chulay, 1989) or fa-
cilitative (Egan et al., 2015) role in human malaria, but it is not clear 
whether distinct avian glycoproteins have an analogous function in 
defence.

We did not recover a signal of selection in other specific genes 
known to influence infection with or survivorship from malaria 
(caused primarily by P. falciparum) in humans (e.g., CD55; Egan et al., 
2015; sickled erythrocyte cells; Friedman, 1978; G6PD; Hedrick, 
2011, etc.). However, the pooled low- high elevation data set and 
two low- high elevation population pairs were highly differentiated 
at a genomic region bearing similarity to the CD59 glycoprotein, 
and this region exhibited highly negative Tajima’s D in one low- 
elevation population (Manuka). The CD59 glycoprotein gene inhibits 
the membrane attack complex, as does CD55. In addition, tumour 
necrosis factor and interleukin- 10 levels—genes recovered in this 
study—were associated with malaria severity in humans (Kurtzhals 
et al., 1998; Othoro et al., 1999) and mice (Kossodo et al., 1997; Li, 
Corraliza, & Langhorne, 1999). These genes thus represent exciting 
candidates for future research on avian malaria.

Several of the genes inferred under selection are involved in the 
innate immune system and function in the inflammatory response; 
some of these interact with components of the adaptive immune 
system. For instance, six candidate genes (beta- defensins, CD59, 
interferon receptor 2, lymphocyte antigen 6E, MHC and transform-
ing growth factor β) regulate or interact with T cells or increase the 
expression of antigens. T cells are involved in the adaptive immune 
system, which is consistent with previous findings that ‘amakihi 
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individuals that survived initial avian malaria infection were immune 
to later challenges (Atkinson et al., 2001). T cells capable of efficiently 
recognizing merozoites could slow the invasion and subsequent rep-
lication of P. relictum, increasing survival of infected ‘amakihi. One 
gene inferred under selection, an erythrocyte membrane protein, is 
not involved in the immune response but is co-opted by Plasmodium 
to cause aggregations of cells that increase transmission efficiency 
among red blood cells. Therefore, this gene in ‘amakihi may be under 
selection to decrease the tendency to form aggregations.

Some genes that were recovered in this study were classified 
according to their primary function, which indicated they were not 
part of the immune response. Many of these genes may be differ-
entiated as a result of demographic processes, or adaptive differ-
ences related to other environmental factors that vary by elevation 
(e.g., temperature, hypoxia or other pathogens such as avian pox; 
Atkinson, Dusek, Lease, & Samuel, 2005; Warner 1968). However, 
some genes may also play dual roles in the organism. For instance, 
genes involved in calcium signalling and transport were among the 
significantly over-represented genes in our analyses. Although these 
genes do not function in the immune system, they may be important 
for combating malaria infection: cellular calcium levels influence in-
fection and transmission success of multiple species of Plasmodium 
(Huff, Marchbank, & Shiroishi, 1958; Scheibel et al., 1987; Tanabe, 
Mikkelsen, & Wallach, 1982), as well as other apicomplexan para-
sites (Donahue, Carruthers, Gilk, & Ward, 2000). These observa-
tions underscore the importance of considering all genes—even 
those seemingly unrelated to a phenotype—as potential candidates 
for functional phenotypes. As we continue to discover multifarious 
roles of genes, annotation will improve such that relevant genes can 
be detected through gene ontology analyses.

4.2 | Genes in repetitive regions

A large number of differentiated loci occurred in repetitive regions, 
which may obscure the true identity of the gene containing the SNP. 
Many loci produced blast results that represented multiple hits of the 
same gene in different taxa or clones (e.g., matches to attractin in 20 
species). A large number of loci, however, resulted in blast hits on a vast 
diversity of genes, many of which were or contained repeat regions or 
transmembrane proteins (Supporting Information files). For instance, 
an erythrocyte membrane protein was the result of one blast search; 
because many proteins have similar domains, the possibility of an ac-
tual match to a membrane protein—either in erythrocytes or another 
cell type—could explain why so many queries had hits in different pro-
teins: They were matching the similar structure of a membrane protein 
rather than a specific gene. A related explanation is that many genes 
have repeat motifs, and these can be difficult to distinguish among 
genes. Because repeat motifs have higher mutation rates than other 
parts of the genome, the finding that many of these loci were diver-
gent between populations is not surprising. Alternatively, these regions 
could represent rapidly evolving pathogen- recognition sites such as 
cell–surface proteins, which are known to contain repeat domains (Katti, 
Sami- Subbu, Ranjekar, & Gupta, 2000). Many authors have dealt with 

repetitive regions by removing them from analyses because they im-
pede our ability to detect genes of interest; however, eliminating them 
from analysis negates the possibility of finding genes with these motifs 
that are of actual importance (Zhuang, Yang, Fevolden, & Cheng, 2012). 
For instance, genes that are important in adaptation may have repeat 
motifs that influence protein binding or gene expression (Gemayel, Cho, 
Boeynaems, & Verstrepen, 2012; Kashi & King, 2006; Prentice et al., 
2017). In several instances, we detected genes (primarily beta- defensin) 
of potential importance in this system within repetitive regions.

5  | CONCLUSIONS

Genomewide association studies and other inferential approaches 
such as outlier tests have tremendous potential to reveal novel 
candidate genes regulating adaptive processes; however, these 
approaches also bring with them several limitations. In particular, 
outlier tests may have high false- positive rates resulting from the 
varied demographic history of different genomic regions (Lotterhos 
& Whitlock, 2014; Whitlock & Lotterhos, 2015), or false negatives 
when there are high levels of background differentiation. In the ab-
sence of experimental studies, genes inferred with these approaches 
should be treated not as conclusive genes involved in malaria protec-
tion, but as candidates for further study. Nonetheless, using a com-
bination of methods should minimize the number of false positives 
and elucidate broad patterns. Here, although false positives can be 
expected from each analysis in isolation (outliers, FST quasi- outliers, 
Tajima’s D), a neutral SNP or genomic region is unlikely to be inferred 
as being under selection in multiple analyses. Therefore, although 
results should be interpreted as candidates for further study, the 
most likely candidates for genes conferring tolerance to malaria in 
low- elevation Hawai’i ‘amakihi are genes recovered under multiple 
approaches (Table 1, Supporting Information Table S6).

Our results suggest that the early stage of adaptation to novel 
strong selection such as introduced malaria may occur via changes in 
multiple genes that each confers tolerance, only some of which are 
common across populations. Similar patterns have been found in ex-
perimental evolution studies (Elena & Lenski, 2003; Notley- McRobb 
& Ferenci, 1999, 2000) and in natural populations (Pfeifer et al., 
2018). Parallel evolution is less common when multiple traits con-
fer the same phenotypic function (Thompson et al., 2017); it is likely 
that over time, some of these changes will replace others as a result 
of gene flow (Caprio & Tabashnik, 1992) and variation in fitness of 
particular mutations in different environments and genetic back-
grounds. Indeed, the observation that few alleles at quasi- outlier loci 
were private to any low- elevation population is consistent with gene 
flow distributing adaptive variants among populations. Alternatively, 
the degree of shared variation could suggest that standing genetic 
variation in ancestral ‘amakihi populations contained SNPs that were 
subject to selection in low- elevation populations.

This work is instructive about the consistency and predictability 
of evolutionary adaptation. Recent work in another emerging dis-
ease system, Tasmanian devil facial tumour disease, demonstrated 
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concordant genomic responses to disease- induced selection across 
populations (Epstein et al., 2016), whereas we detected a only small 
number of genes that changed in multiple populations. However, our 
analyses revealed frequent changes in particular classes of genes 
(e.g., interleukin related; multiple glycoproteins). The diversity of re-
sponse to selection in Hawai’i ‘amakihi populations could be due to 
its larger effective population size or lower gene flow among popula-
tions than Tasmanian devils. Our finding that certain classes of genes, 
but not specific genes, are associated with adaptation to malaria 
among populations within a species is consistent with patterns in the 
literature at higher taxonomic levels, including across such divergent 
taxa as mammals and birds. This supports the idea that selection acts 
on available variation, which differs among independently evolving 
populations, but that specific types of host genetic variation are tar-
geted by the co-evolutionary arms race in host–pathogen systems.
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